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ABSTRACT
Objectives  Across Canada, in the last decade, 
incidence rates of sexually transmitted and blood-borne 
infections (STBBI) have peaked (syphilis) or plateaued 
(hepatitis C virus (HCV) and HIV). Key populations 
(gay, bisexual and other men who have sex with men, 
trans and gender-diverse people, and people who use 
injection drugs) are at greater risk for these STBBIs, so 
correctly predicting risk before screening potentially 
infected individuals is crucial. We developed and 
validated a diagnostic clinical risk prediction model 
(CRPM) estimating HIV, HCV and syphilis risk for two key 
populations in two Canadian provinces.
Methods  We used 20 variables and STBBI test results 
from a cross-sectional study evaluating multiplexed 
testing (detection of coinfections) in New Brunswick and 
Quebec (n=400) to develop our CRPM. We randomly 
split the data into development (n=300) and validation 
(n=100) datasets using clinic-stratified sampling. We 
used Bayesian predictive projection with development 
data to select ranked STBBI predictors. We obtained the 
ORs of the highest performing submodel measured as 
area under the receiver operating curve (AUC), sensitivity 
and specificity with 89% credible intervals (89% CrI) 
using validation data. Analyses were performed in R 
(≥V.4.2.3).
Results  Out of 400 participants, 73 were infected 
with HIV (n=16), HCV (n=60), and/or syphilis (n=5). An 
internally validated submodel with two predictors (past 
drug injection, type of past sexually transmitted infection) 
displayed the highest AUC (0.79; 89% CrI 0.66 to 0.79), 
sensitivity (0.85; 89% CrI 0.79 to 0.91) and specificity 
(0.30; 89% CrI 0.15 to 0.50). The predictor contributing 
most to STBBI risk was past drug injection (OR=7.62; 
89% CrI 4.41 to 13.07).
Conclusions  This Bayesian-based CRPM is the first to 
identify high-risk individuals for HIV, HCV and syphilis 
with an overall good performance that minimises case 
missing. After additional validation, it could serve as a 
promising novel tool for prescreening key populations 
and improve Canadian STBBI multiplexed screening 
strategies.

INTRODUCTION
Context and rationale
In Canada, sexually transmitted and blood-borne 
infection (STBBI) incidence rates have either 

plateaued (eg, HIV, hepatitis C virus (HCV)) or 
increased (eg, syphilis) in the last decade, with an 
estimated 63 000 people currently living with HIV 
and 246 000 people with HCV.1 Syphilis, caused by 
Treponema pallidum, is experiencing an epidemic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Clinical risk prediction models (CRPM) to 
identify individuals at higher risk of sexually 
transmitted and blood-borne infections (STBBI) 
have been developed and validated mostly for 
HIV and have shown variable performance.

	⇒ In Canada, where STBBI incidence rates 
are currently rising or plateauing, only two 
frequentist statistics-based STBBI CRPMs have 
been developed to date, and neither targeted 
people who use injection drugs, gay, bisexual 
and other men who have sex with men, or trans 
and gender-diverse individuals of Quebec or 
New Brunswick.

WHAT THIS STUDY ADDS
	⇒ To our knowledge, we have developed and 
validated the first data-driven Bayesian 
statistics-based hepatitis C virus (HCV), HIV 
and syphilis CRPM, which allowed us to obtain 
easily interpretable measures of uncertainty in 
the form of credible intervals (CrI).

	⇒ The final model had good overall performance 
(area under the receiver operating curve=0.79; 
89% CrI 0.66 to 0.79) that achieved a high 
sensitivity (0.85; 89% CrI 0.79 to 0.91), despite 
having low specificity (0.30; 89% CrI 0.15 to 
0.50). If implemented, it would reduce the 
probability of erroneously identifying high-risk 
individuals as low-risk, which is key in STBBI 
screening programmes.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ We present a promising novel tool for 
prescreening individuals at high risk for HIV, 
syphilis and/or HCV that, after additional 
validation, has the potential to improve STBBI 
screening strategies if it is implemented in 
combination with targeted testing strategies in 
two distinct key populations.
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with 30 cases per 100 000, corresponding to a 178% increase 
over 10 years.1 Although survival attributed to treatment has 
improved, HIV was responsible for 104 deaths in 2018 and 
HCV case fatality rate was 7.4 per 100 000.1 2

Additionally, individuals belonging to key populations are at 
greater risk of contracting STBBIs because they are often stig-
matised and discriminated against, including when accessing 
healthcare services.3 This situation increases their likelihood 
of healthcare avoidance, thus missing appropriate prevention, 
testing and treatment.3 Consequently, up to 14% and 44% of 
people infected with HIV and HCV, respectively, are unaware of 
their status.1 Gay, bisexual and other men who have sex with men 
(gbMSMs) accounted for 43.8% of new HIV cases in 2020 and 
71% of all male syphilis cases in 2021.2 4 People who use injec-
tion drugs (PWID) accounted for 46.1% of HCV seroprevalence 
in 2019.1 No such data are available for trans and gender-diverse 
(TGD) individuals. In addition, coinfections, during which these 
pathogens interact in ways that influence disease susceptibility, 
progression and treatment outcomes, are common.1

Standard asymptomatic (ie, screening) and symptomatic 
testing strategies in Canada have not yet successfully reached 
these at-risk populations due to long turnaround time (TAT) and 
reliance on laboratory labour.5–8 Although point-of-care tech-
nologies designed to facilitate comfort with testing or decrease 
TAT by accurately detecting multiple infections simultaneously 
(eg, multiplexed testing) are being introduced into screening 
programmes, limitations based on linkage to care and reliance 
on confirmatory testing still remain.5–8 Calls to, improve, and 
deploy these technologies develop have specified that to amplify 
impact, models combined with these technologies would help 
target screening of those most at risk.1

Therefore, we used secondary data from a study evaluating 
a HIV, HCV and syphilis multiplexed screening strategy to 
develop and validate a diagnostic clinical risk prediction model 
(CRPM) for PWID, gbMSMs and TGD individuals from two 
distinct provinces.9 CRPMs are statistical tools that can be 
employed by physicians or patients to estimate the probability 
of a specific health outcome based on patient characteristics.10 
Current STBBI screening strategies would benefit from diag-
nostic CRPMs used as prescreening tools to assist physicians 
in identifying those most at risk.11 Acceptable CPRM perfor-
mance, corresponding to an area under the receiver operating 
curve (AUC; a combined measure of sensitivity and specificity) 
above 0.80, is crucial to minimise the number of high-risk indi-
viduals erroneously not encouraged to test (ie, false negative) 
and of low-risk individuals erroneously encouraged to do so (ie, 
false positive).11 Existing STBBI CRPMs have mostly focused on 
HIV prediction and shown variable performance (AUC: 0.49–
0.89).11–13 CRPMs developed for other STBBIs (ie, CT/NG and 
HCV) showed variable performance (AUC: 0.49–0.99).14–16 The 
vast majority of existing CRPMs have used frequentist statistical 
development methods, but data-driven methods (ie, Bayesian 
statistics and machine learning (ML)) are increasing.16 17 
Despite the predictive power of ML, its black-box nature often 
prevents intuitive result interpretation.18 We pursued a Bayesian 
framework that allows for a more intuitive interpretation of 
uncertainty through credible intervals (CrI).19 We previously 
developed a Bayesian-based HIV CRPM for individuals living in 
townships in South Africa (AUC: 0.71; 89% CrI 0.68 to 0.72).20 
To our knowledge, only two STBBI CRPMs have been devel-
oped using Canadian data. Both employed frequentist methods, 
neither targeted key populations from these provinces, and only 
one was validated, highlighting limitations in CRPM data and 
methods.21 22

Objective
Therefore, we aimed to develop and validate a diagnostic 
prescreening CRPM that, if combined with multiplexed testing, 
could improve STBBI testing equity in Canadian key popula-
tions, especially PWID, gbMSMs and TGD individuals.

METHODS
We followed the transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (online supple-
mental tripod) statement (online supplemental checklist).10

Data source
We recruited 401 participants from a cross-sectional study 
conducted at a community health clinic for gbMSMs and 
TGD individuals who have sex with men in Quebec (RÉZO; 
n=237) and a harm-reduction clinic for PWID in New Bruns-
wick (RECAP; n=164), using convenience sampling.9 We evalu-
ated an app-assisted multiplexed testing strategy through which 
we screened participants for HIV, HCV and syphilis using two 
immunological multiplexed tests and conducted confirmatory 
laboratory tests as per Canadian guidelines.23 We extracted all 
available deidentified variables in the app’s pretest questionnaire 
(predictors) and confirmatory test results (outcome). Predictors 
corresponded to relevant STBBI risk factors collected by nurses 
in the primary study. Details on inclusion/exclusion criteria, key 
study dates, sample size calculations, app interface and labora-
tory testing are reported elsewhere.9

Model specifications
We used participant self-reported categorical data as predictors 
without applying variable preselection for model development. 
We cross-checked testing history data with clinic records and 
when we found discrepancies, clinic records information was 
used. The outcome of interest was STBBI status (positive or nega-
tive). It was determined by positive confirmatory test results for 
HIV, HCV and/or syphilis (incident or existing acute or chronic 
infection) and negative confirmatory test results for all three. We 
identified new syphilis, HCV or HIV infections in participants 
testing positive who had no or unknown HIV, syphilis or HCV 
infection status history, excluding those that had spontaneously 
cleared or been treated for their HCV infections, when the infor-
mation was available. Study staff were blinded to the outcome 
during predictor collection and laboratory staff were blinded to 
predictors and outcomes during confirmatory testing. All model 
metadata used in our analysis are described in table 1. Additional 
variable handling details are in online supplemental methods and 
sensitivity analysis.

Missing data
We imputed 446 missing data from 77 individuals using multiple 
imputation by chained equation (MICE) implemented within 
the mice package.24 We found no missing data for STBBI status. 
We excluded one individual from model development due to 
>50% missing data. Missing data pattern for some variables 
depended on clinic (online supplemental figure S1). Thus, we 
included clinic location as a dummy variable and imputed data 
with the appropriate Bayesian regression (table 1).24 We imputed 
data in five datasets, evaluated its validity and pooled values for 
the remainder of the analysis (online supplemental figure S2 and 
online supplemental methods and sensitivity analysis).

Predictive projection
With the pooled imputed datasets, we conducted variable selec-
tion by predictive projection (ie, projection of the posterior of 
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the full model onto each candidate submodel), a robust method 
for high-dimensional datasets (ie, relatively small sample sizes 
compared with the number of variables).25 We separated our 
data into development (ie, training; n=300) and validation (ie, 
testing; n=100) datasets using clinic-stratified random sampling 
to ensure representation of both sites in each set. We fit then 
development data with a full Bayesian logistic regression refer-
ence model containing all predictors (ρ=20) and STBBI status 
as the outcome variable.25 By including clinic location in the full 
model, we adjusted it to account for differences and confounding 
in each key population. We assigned horseshoe priors (﻿‍τ ‍=0.02) 
for all coefficients.25 We then selected the sparsest submodel 
with a performance equivalent to the full model and reduced the 
CRPM complexity (online supplemental methods and sensitivity 
analysis).

Model evaluation
We evaluated the predictive accuracy of nine submodels with 
performances (ie, estimated log predictive density (ELPD)) 
closest to the full model using a method independent from accu-
racy value thresholding. We computed sensitivity and specificity 
from 2000 draws of submodels posterior predictive distribution 
for STBBI status and AUC from expected values of these draws. 
We quantified uncertainty using 89% CrIs to increase stability 
with effective sample sizes below 10 000 and to avoid confusion 
with 95% CIs.26 We selected the final model with the best AUC 
obtained with the validation dataset. We then computed the OR 
and associated 89% and 95% CrIs from each coefficient in the 
final fitted model to inform the contribution of each predictor.

All analyses were done in R (≥V.4.2.3).27

Sensitivity analysis
In a sensitivity analysis, we examined differences in behaviour 
between incident and existing STBBI cases and compared results 

obtained with imputed data to those obtained with complete case 
data (n=323). We also compared the final CRPM with CRPMs 
developed with HIV/syphilis, HIV/HCV and HCV as outcomes 
(online supplemental methods and sensitivity analysis).

RESULTS
Participant recruitment and characteristics
In the original study, we recruited 400 participants from RÉZO 
(﻿‍n‍n=236) and RECAP (﻿‍n‍n=165), excluding the removed indi-
vidual. Most participants (63.75%) self-identified as male, with 
18.25% as female and 1.75% as transgender. Nearly half of all 
participants (49.25%) were 35 years old and above. We iden-
tified 73 STBBIs, corresponding to 16 HIV, 5 syphilis and 60 
HCV infections. Of these, eight were coinfections (five HCV/
HIV and three HIV/syphilis) and 20 were new infections. Addi-
tional details about visit procedures, multiplexed test results and 
treatments are described elsewhere.9

Due to key population differences in density, risk factors and 
needs, RECAP had a greater HCV infection proportion (78.33%) 
while RÉZO had greater HIV (100%) and syphilis (80%) infec-
tion proportions. RECAP also had a greater proportion of indi-
viduals reporting using injection drugs in the past (29.75%) than 
RÉZO (5.5%). We also observed differences in gender, descent, 
education, income and work status by clinic. The distribution of 
each characteristic by clinic is outlined in online supplementary 
table S2 for each dataset.

The outcome (ie, STBBI status) was similarly distributed 
between the development (17% positive cases) and validation 
datasets (20% positive cases). The distributions of variables in 
the pooled imputed datasets (m=5) are shown in online supple-
mental table S2.

The submodels reached the predictive performance of the full 
model with nine ranked variables
To develop a simple CRPM with a reduced number of predic-
tors of STBBI infection, a sample size of 300 was sufficient to 
use predictive projection feature selection on a full model with 
all predictors (ρ=20).25 We found that most of the full model 
predictor’s posteriors had CrIs spanning the null due to horse-
shoe prior effects (online supplemental figure S3).

Based on predictor ranking agreement between cross-
validation folds (online supplemental figure S4), we identified 
the nine sparsest submodels with ELPD closest to the refer-
ence model. As expected, when we fitted each submodel with 
the development dataset, the AUC increased as the number of 
predictors increased, until reaching the value of the full model 
(AUC=0.84; 89% CrI 0.8 to 0.86) (figure 1). Submodels 2 to 
9 had an acceptable AUC (>0.80). Sensitivity remained very 
similar, between 0.85 (89% CrI 0.81 to 0.43) and 0.87 (89% CrI 
0.83 to 0.91), and so did specificity, between 0.32 (89% CrI 0.21 
to 0.43) and 0.38 (89% CrI 0.26 to 0.49), across all submodels 
(online supplemental figure S5).

The submodel with two predictors had the best performance 
with the validation dataset
When we fit these submodels with the validation dataset (n=100) 
(table 1), we found that the submodel with past drug injection 
and type of past STI test had the best performance with an AUC 
of 0.79 (89% CrI 0.66 to 0.79), a sensitivity of 0.85 (89% CrI 
0.79 to 0.91) and a specificity of 0.30 (89% CrI 0.15 to 0.50) 
(online supplemental figures 1 and 5). All other submodels had 
AUC values of 0.72 (89% CrI 0.70 to 0.45) to 0.78 (89% CrI 
0.72 to 0.82) and similar values for sensitivity, between 0.85 

Table 1  Clinical risk prediction model metadata by variable category

Variables Transformation Imputation

 � Location

 � Clinic.Location None None

 � Testing history

 � TypePastSTD 3-factor Bayesian polytomous 
regression

 � PastSTD Binary Logistic regression

 � PastHIVTest, PastHCVTest, 
PastSyphilisTest, PastSyphilis

None Bayesian polytomous 
regression

 � Individual

 � Gender None Bayesian polytomous 
regression

 � Age Binary Logistic regression

 � Behavioural

 � CurrentPartner None Logistic regression

 � SexualActivity, CondomUse, 
SexualPartners, PastInjectDrugs, 
ShareNeedles, Alcohol

Binary Logistic regression

 � Sociodemographic

 � Descent, EducationStatus, 
WorkStatus, MonthlyIncomeStatus

Binary Logistic regression

 � Test results

 � hcv.pos, hiv.pos, syphilis.pos Binary (STBBI 
positive)

None

STBBI, sexually transmitted and blood-borne infections.
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(89% CrI 0.79 to 0.45) and 0.86 (89% CrI 0.79 to 0.91) and 
specificity, between 0.30 (89% CrI 0.10 to 0.45) and 0.35 (89% 
CrI 0.20 to 0.50).

The predictor with the strongest effect on STBBI risk (ie, indi-
cating a positive diagnosis) was past drug injection (OR=7.62; 
89% CrI: 4.41 to 13.07) (figure 2).

Sensitivity analysis
We found little to no difference in behavioural variables’ distribu-
tions between incident and existing STBBI cases (online supple-
mental table S3), which the imputation was successful, and some 
differences in prediction depending on STBBI of interest (online 
supplementary methods and sensitivity analysis).

Using the final model
To use the final model, physicians should input patient past drug 
injection (ie, yes or no) and type of past STI test (ie, specified, 
unspecified or none) information. The CRPM will then output 
a risk probability, and they can decide whether to offer testing 
(table 2).

DISCUSSION
Interpretation
Overall, the results obtained with the validation dataset had a 
slightly lower performance and greater uncertainty than those 
obtained with the development dataset. A final CRPM with a 
nearly acceptable AUC (ie, 0.79) is encouraging considering its 
intended use as a prescreening tool to identify high-risk individ-
uals and offer them testing.11 We obtained higher AUC measures 
than with a HIV CRPM that we previously developed using 
South African data, although greater uncertainty due to smaller 
sample size.20 In addition, these validation values are on the 
higher end of existing STBBI CRPMs and include uncertainty 
measures which are often lacking.11–13 16 17 In addition, unlike 
with most existing ML models, sensitivity was always higher 
than specificity, resulting in fewer false positives than false 
negatives.16

PWID are known to be at higher HCV risk.1 Thus, due to 
numerous HCV-positive cases in our dataset (n=60), a CRPM 
with past drug injection as the most important predictor 
performed as expected. It was also identified as an important 
predictor of STI risk in another existing Canadian CPRMs, but 

Figure 1  Area under the receiving operating characteristic curve (AUC) of nine submodels and the full reference model (‍p‍ = 20) fitted with the 
development (blue; n = 300) and validation (purple; n = 100) datasets. We measured AUC based on the values of expected STBBI status based on 
2000 samples drawn from the posterior predictive distributions. On the x-axis, each predictor named represents the submodel containing it and all 
predictors to its left. The reference model contains all available predictors. The AUC of the submodels fitted with the development (ie, training) dataset 
increased by submodel size whereas the submodel containing two predictors had the highest performance when fitted with the validation (ie, testing) 
dataset. Each point represents the median and each line represents 89% credible intervals of the variation in expected STBBI status values obtained 
from each predictor present in each model. STBBI, sexually transmitted and blood-borne infections.
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its predicting ability was not quantified.21 Predictor ranking 
only differed when we removed HCV cases, which may indicate 
that the final CRPM will perform better with an HCV-infected 
individual.

Strengths and limitations
To our knowledge, we developed and validated the first Bayesian 
HCV, HIV and syphilis CRPM. Using this approach allowed us to 
incorporate sparsity assumptions into our model with horseshoe 
priors and to output easily interpretable uncertainty probability 
measures (ie, CrIs).19 Using predictive projection, we obtained 
a simple model containing two predictors, which will be useful 
in rapidly identifying high-risk individuals who would benefit 
from STBBI testing. Unlike other previously developed CRPMs, 
we validated our CRPM internally using cross-validation with 

the development dataset and through random splitting of our 
initial dataset.10–14 16 In addition, the performance of candidate 
submodels based on draws of the posterior distribution allowed 
us to use a threshold-independent calculation of the sensi-
tivity, specificity and AUC. Threshold-based measures are often 
assigned arbitrarily and decided based on very specific clinical 
context that can impact generalisability.28

Although a single joint model that predicts risk in two key 
populations with overlapping risk factors and infections has 
merit, the limited data source size obtained from two heteroge-
neous populations could have impacted its validity. To address 
the small sample size, we employed a method that generates 
robust models from scarce datasets.25 To address the heteroge-
neity, we considered developing a separate model for each popu-
lation. However, the limited sample size and numerous missing 
data in the RECAP dataset prevented this, because MICE is 
not robust with high proportion of missing values. Instead, we 
accounted for key population differences with the clinic location 
variable in each step of our analysis, including in the reference 
model, where it accounts for the interpopulation heterogeneity. 
Grouping incident and existing cases as positive cases may have 
led to confounding bias from difference in behaviours between 
those with and without awareness of their status. However, the 
distribution of most behavioural variables did not differ between 
these groups. In practice, a low-specificity CRPM could lead to 
labour, psychological and monetary costs associated with low-
risk individuals encouraged to test.29 However, low specificity 

Figure 2  Median, 89% (thick segment) and 95% credible intervals (thin segment) of estimated OR for the intercept and each predictor of STBBI 
status in the final submodel (p=2) fitted with the validation (ie, testing) set (n=100) based on 2000 draws of the predictive distribution. The vertical 
line represents null effect (OR=1.0). STBBI, sexually transmitted and blood-borne infections.

Table 2  Risk of sexually transmitted or blood-borne infection (STBBI) 
by predictor in the final model (p=2)

Past drug injection Type of past STI test STBBI risk (89%CrI)

No None 0.06 (0.04–0.10)

Yes None 0.31 (0.15–0.59)

No Unspecified 0.19 (0.04–0.55)

No Specified 0.09 (0.04–0.26)

Yes Unspecified 0.64 (0.16–0.94)

Yes Specified 0.43 (0.15–0.82)
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is preferable to low sensitivity by minimising the number of 
missed high-risk individuals for targeted testing.29 By sourcing 
data from a cross-sectional primary study using convenience 
sampling, conducted in urban centres, any bias resulting from 
the selection of participants that frequently visit these clinics 
may have impacted the generalisability of our results.9 Despite 
using rigorous imputation methods, we are not guaranteed 
that missing data followed the same pattern as observed data. 
Additionally, residual confounding may have been introduced 
when grouping variables and from uncollected variables (eg, 
partner STBBI status). The absence of methods to incorporate 
coinfection mechanisms in our final model may limit its predic-
tive accuracy for coinfected individuals. We could consider a 
multivariable regression to jointly model the correlated risks of 
coinfections in the future. Finally, apart from testing history, for 
which clinic records were available, app-based predictor data 
were self-reported from an interview with a nurse, which may 
have been impacted by social desirability bias. However, in prac-
tice, CRPM users will have to declare their information to the 
healthcare provider to receive their risk probability.

Implications
Our results are aligned with Canadian elimination targets 
for three STBBIs and calls to improve current screening 
strategies.1 By providing a validated CRPM specific to two 
key populations in two Canadian provinces, with accept-
able performance, we are providing decision-makers with 
a novel prescreening tool that can be used in combination 
with targeted testing strategies to improve multiplexed 
testing initiatives for these populations. Currently, any 
individual belonging to a key population is encouraged 
to test frequently, with less emphasis on individual risk, 
and the monetary and time cost of all administered tests 
constitute major deterrents to upscaling these initiatives. A 
simple CRPM that can identify those at truly greater HIV, 
HCV and/or syphilis risk within those populations while 
minimising case missing can assist healthcare providers 
in offering screening on an individual basis and decrease 
overall testing costs.

In the future, we plan to conduct additional validation 
and updating in other global populations that would benefit 
from targeted STBBI screening (eg, rural populations in 
India), which we will source from larger homogenous study 
populations using a sampling method less prone to bias, with 
incident cases, more syphilis cases, and including mecha-
nisms of coinfections, to confirm our model’s performance 
in key populations and improve on the current limitations 
of our CRPM.

In addition, costs required for successful implementation and 
maintenance of a CRPM do not guarantee an improved cost-
effectiveness compared with current screening strategies.30 Thus, 
our CRPM would benefit from a cost-effectiveness analysis.

Finally, assigning risk to an individual can be stigmatising 
and depends on the CRPM user’s willingness to share their 
information with healthcare providers. Therefore, our CRPM 
should be evaluated by members of the targeted community 
to ensure use of inclusive and appropriate language before 
implementation.

In conclusion, we have developed and validated a prom-
ising tool to prescreen individuals at high risk for three 
STBBIs with the potential to improve screening strate-
gies. After additional validation and evaluation, the CRPM 
could identify and encourage high-risk individuals to use 

multiplexed screening interventions for HCV and related 
coinfections.
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